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Abstract. A new boundary condition for a diffusive system with a partially permeable wall
described by the Klein–Kramers equation is proposed. The Green functions for such a system
are given and a generalization to the system with a series of walls is briefly discussed. It is
shown that the well known boundary condition for the case of a partially absorbing wall (which
gives the so-called radiation boundary condition for the diffusion equation) cannot be used for
the system under consideration.

1. Introduction

The Brownian motion in a system with a partially permeable wall (PPW) is of potential
interest in many fields of physics, technology and biophysics. The wall can represent a
membrane, potential barrier or thin slab [1–3]. A partially permeable wall is understood
here as a ‘barrier’ which can be passed with given probability by particles moving towards
the wall. Although the diffusion problem in such a system is usually considered on the basis
of Smoluchowski equation, it is convenient to discuss it in phase space, where the diffusion
process is described by the Klein–Kramers equation. The main reason is that the boundary
conditions at the wall can be expressed through the fluxes of Brownian particlesJ+, J−
flowing towards the wall and in the opposite direction, respectively. Thus, to obtain the
boundary conditions for the diffusion equation, we first perform the following considerations
in phase space.

Previously, diffusion in systems with fully reflecting, fully absorbing or partially
absorbing (which is sometimes called ‘partially reflecting’) walls have been considered
[4–12]. The Brownian motion is then investigated only in the half-space bounded by the
wall. To the best of our knowledge, phase-space diffusion in a system with partially
permeable wall has not been studied. We note that Brownian motion in a system with
partially absorbing wall is qualitatively different from that in a system with PPW, because
in the former the absorbed particle has no chance to return to the system. The main problem
is to fix the boundary conditions at the wall. For a system with fully reflecting or fully
absorbing walls the boundary conditions are well known. The Brownian motion in a system
with partially absorbing wall has been considered in many papers in the last two decades
[4–12]. The following boundary condition for the system of one spatial dimension has been
taken:

f (xw, v, t) = κf (xw,−v, t) 0< κ < 1 (1)
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wheref (x, v, t) is the density of particles with velocityv in a positionx, andxw is the
location of the wall. The coefficientκ, which characterizes the absorbing property of the
wall, is assumed to be constant in time andv > 0.

We are going to show that the boundary condition (1) must be replaced by another
boundary condition when the Brownian motion is studied in a system with PPW. We present
the phase-space Green function of the considered system, which is obtained by means of the
modified method of images. Then, we deduce the boundary conditions from this function.

2. The model

The Brownian motion in phase space is determined by the one-dimensional Klein–Kramers
equation:

∂f

∂t
+ v ∂f

∂x
= ε−1 ∂

∂v

(
vf + ∂f

∂v

)
(2)

whereε−1 is the friction constant; the variablest , v andx are in appropriate units [13]. The
Green functionG(x, v, t; x ′, v′, t ′), which fulfils equation (2) with appropriate boundary
conditions and the initial condition

G(x, v, t; x ′, v′, t ′)|t=t ′ = δ(x − x ′)δ(v − v′)
is interpreted as a probability density for finding a particle in the state (x, v) at time t after
departure from the initial state (x ′, v′) at an earlier timet ′ (for simplicity we put t ′ = 0).
When additional sources of particles do not occur at any timet > 0, one obtains the
distribution functionf (x, v, t) of Brownian particles through the integral formula

f (x, v, t) =
∫

dx ′
∫

dv′G(x, v, t; x ′, v′, 0)f (x ′, v′, 0) (3)

where the integrations with respect tox ′ and v′ are taken over the whole range of these
variables.

The Green function for a system without a membrane is [4, 5]

G0(x, v, t; x ′, v′, 0) = 1

2π
√
1

exp[−aV 2
d + bVd(X + εV )− c(X + εV )2] (4)

where

V = v − v′ X = x − x ′ e1 = 1− exp

(
− t
ε

)
e2 = 1− exp

(
−2t

ε

)
Vd = v − v′ exp

(
− t
ε

)
1 = 2tεe2− 4(εe1)

2 a = εt

1
b = 2εe1

1
c = e2

21
.

3. The necessity of a new boundary condition

At first we note that the boundary condition for the partially absorbing wall (1) is equivalent
to the following boundary condition:

J+(xw, t) = κJ−(xw, t) 06 κ 6 1 (5)

where the fluxesJ+ andJ− are defined as

J+(x, t) =
∫ ∞

0
dv vf (x, v, t) J−(x, t) = −

∫ 0

−∞
dv vf (x, v, t). (6)
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Let us now consider the possibility of applying the boundary condition (5) for a system
with PPW. Then, the permeability properties of the wall are described by the parameter
κ, which is again assumed to be independent of time. This assumption can be replaced
by the assumption that the passing of any particles through the wall does not depend on
the locations and motion of other particles. Moreover, we assume that the total fluxJ is
continuous at the PPW, i.e.

J (x+w , t) = J (x−w , t) (7)

wherex−w (x
+
w ) denotes the left (right) limitx → xw and

J (x, t) = J+(x, t)− J−(x, t). (8)

Let us considerN particles with the same initial velocitiesv0 which depart from the
locationx0 at the initial momentt ′ = 0. Then,

f (x ′, v′, 0) = Nδ(x ′ − x0)δ(v
′ − v0). (9)

The system without a wall can be treated formally as the system with a fully permeable
wall. For this case the Green function is given by (4). Using (4), (8) and (9) we obtain,
after elementary calculations, the relation

J0+(xw, t) = α(t)J0−(xw, t) (10)

where

α(t) = 2+√πB(t)
2−√πB(t)

with

B(t) = [(2a − εb) exp(−t/ε)− bε + 2cε2]v0+ (b − 2cε)(xw − x0).

The index 0 in equation (10) denotes the fluxes generated (through equations (3) and (6))
by the functionG0 (4), i.e. the fluxes in the system without a wall. We note that in the
limit of large friction (ε→ 0) relation (10) takes the form

J0+(xw, t) = (8+√πv0)t + xw − x0

(8−√πv0)t + xw − x0
J0−(xw, t). (11)

From (10) and (11) one sees that the coefficientκ from equation (5)depends on timefor
the limiting case of a fully permeable wall. We expect that the Green function is continuous
with respect to the permeability coefficient. So, the time dependence ofκ also occurs in the
case of ‘almost fully’ permeable walls, which is in contradiction with our initial assumption.
Thus, the boundary condition (5) (and the equivalent one (1)) is not suitable for a system
with PPW.

4. The Green functions for the system with PPW

We formulate the boundary condition (BC) in the following manner:

If at a unit of timeN particles try to pass through the wall,(1− δ)N of them will go
through, whereasδN will be reflected by the wall.
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We are now going to find the Green functions which satisfy this condition.
At first we construct the Green function for the case when the pointsx andx ′ are located

in the same half-space bounded by the wall. In this case we find the Green functions which
fulfil the above condition using the method of images. The method consists of replacing the
wall by additional particle sources in such a way that the boundary condition is fulfilled [14].
Then, using the function we deduce the boundary condition which is employed to construct
the Green functions for the case when the pointsx andx ′ lie in different half-spaces.

The situation which is described in the above BC occurs when the wall is simulated
by the additional functionδG0 with the initial state (2xw − x ′,−v′), which is the ‘mirror
reflection’ of the state (x ′, v′) with respect toxw. Indeed, using the mirror symmetry of
the initial states, it is easy to see that ifN particles which depart from the state (x ′, v′)
go through the pointxw, δN particles which depart from the initial state (2xw − x ′,−v′)
go through this point moving in the opposite direction. Thus, the Green function for the
system with partially permeable wall reads

G++(·) = G−−(·) = G0(·)+ δG0(x, v, t; 2xw − x ′,−v′, 0) (12)

where(·) ≡ (x, v, t; x ′, v′, 0), and the indices of the Green functions refer to the signs of
(x−xw) and (x ′ −xw), respectively. The factorδ controls the permeability properties of the
wall: for δ = 1 the fluxJ flowing through the PPW is equal to zero and forδ = 0 the flux
is equal to the fluxJ0 flowing in the system without the wall. The above equation means
that the Green functionsG++ andG−− are only expressed by the same equation; however,
their domains with respect to the space variable are different.

Now, we derive the mathematical form of the boundary condition at the wall. Using
the relations (4), (5) and (8), and observing that

G0(x, v, t; x ′, v′, 0) = G0(−x,−v, t;−x ′,−v′, 0)

one can show that the function (12) fulfils the following boundary conditions,

J+(x−w , t; x ′, v′, 0) = (1− δ)J0+(xW, t; x ′, v′, 0) if x ′ < xw (13a)

J−(x+w , t; x ′, v′, 0) = (1− δ)J0−(xW, t; x ′, v′, 0) if x ′ > xw (13b)

where

J+(x, t; x ′, v′, 0) = N
∫ ∞

0
dv vG(x, v, t; x ′, v′, 0)

J−(x, t; x ′, v′, 0) = −N
∫ 0

−∞
dv vG(x, v, t; x ′, v′, 0)

denotes the value of the flux at pointx and timet , which is generated by the point source
of N particles placed at the initial moment in the state (x ′, v′). Equations (13a) and (13b)
appear as the mathematical formulation of the BC, but they are not useful when obtaining
the Green function for the case when pointsx andx ′ lie at the opposite half-spaces bounded
by the wall. Now we are going to find the general boundary condition at the wall.

The Green function (12) also fulfils the following boundary condition:

J (xw, t; x ′, v′, 0) = (1− δ)J0(xw, t; x ′, v′, 0). (14)

Since the fluxJ is assumed to be continuous with respect to the space variable (equation (7)),
we do not specify the left or right limit of this variable in the above equation. We note
that equation (14) links the values of the fluxes flowing in opposite regions bounded by the
walls. So, this equation is suitable to determine the Green functionsG+− andG−+. It is
easy to see that the function

G+−(·) = G−+(·) = (1− δ)G0(·) (15)
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(where as previously(·) ≡ (x, v, t; x ′, v′, 0)) generates the fluxes which satisfy
condition (14).

From equations (3), (6) and (8) we find that the whole flux flowing in the systemJ (x, t)

is a superposition of the ‘partial fluxes’J (x, t; x ′, v′, 0), i.e.

J (x, t) =
∫

dx ′
∫

dv′ J (x, t; x ′, v′, 0). (16)

Taking into account (14) and (16) we obtain the boundary condition at the wall, which is
fulfilled for any initial distribution:

J (xw, t) = (1− δ)J0(xw, t). (17)

We note that the boundary conditions (7) and (17) do not depend on the particle initial
velocity; therefore, they can be used for the Smoluchowski diffusion equation. In fact, we
have deduced the boundary condition (17) in the configuration space [15, 16]. At that time,
however, the applicability of this boundary condition in phase space was unclear.

5. Final remarks

The Green functions (12) and (15) greatly simplify the calculations of the distribution
function of the system with a thin membrane, potential barrier etc. The only problem is
to determine the coefficientδ. We assume that this coefficient is independent of the fluxes
flowing through the PPW, so thus we can perform the calculations of the coefficientδ, based
on equation (17), in a stationary state. A phenomenological model (as Kedem–Katchalsky
formalism [17] for the membrane transport), which provides the fluxes from equation (2),
can be applied here. When the wall represents the thin potential barrier, the fluxes present
in relation (17) are known in the stationary state [18, 19]:

J = kT λ

h
exp

[
−1U
RT

]
1C J0 = D

λ
1C

where1C is the difference in the particle concentration between the opposite sides of
the barrier,h, k, D are the Planck, Boltzmann and diffusion constants, respectively,T is
the temperature,λ is the thickness of the barrier (which is small with respect to the size
of the system) and finally1U is the height of the potential barrier. Then, the coefficientδ

reads

δ = 1− kT λ
2

hD
exp

[
−1U
kT

]
.

The boundary condition (14) is useful to determine the Green function for a system
with a series of PPWs. In this case the following procedure can be invoked: let us assume
that for a system with (n − 1) PPWs the Green functions are known. We now add to the
system a newnth wall. In such a system the boundary condition (14) can be used, butδ

refers to the new wall andJ0 is generated by the Green functions for (n− 1) walls.
If the permeability coefficientδ depends on the concentration (as, for example, happens

in some types of membrane transport), the procedure of the concentration calculations should
be modified. One can divide the time domain into intervals which are small enough so that
the assumption of the concentration independence ofδ is approximately valid for a given
interval. Then, the Green functions (12) and (15) can be used for every interval.
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